

Warm Up

Lesson Presentation

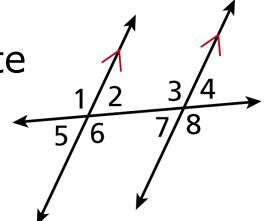
Lesson Quiz

Holt McDougal Geometry

Warm Up

Identify the pairs of alternate interior angles.

 $\angle 2$ and $\angle 7$; $\angle 3$ and $\angle 6$



- **2.** Use your calculator to find tan 30° to the nearest hundredth. 0.58
- **3.** Solve $\tan 54^\circ = \frac{2500}{x}$. Round to the nearest hundredth.

1816.36

Objective

Solve problems involving angles of elevation and angles of depression.

Holt McDougal Geometry

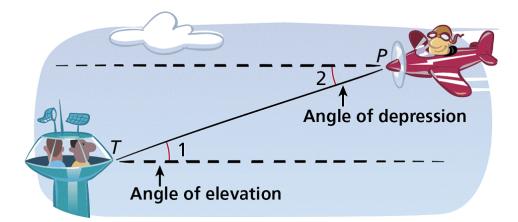
Vocabulary

angle of elevation angle of depression

Holt McDougal Geometry

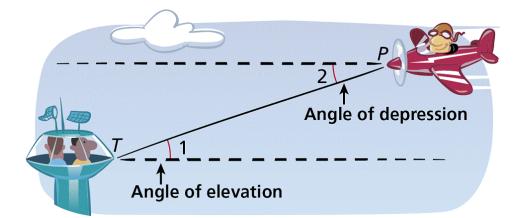
An **angle of elevation** is the angle formed by a horizontal line and a line of sight to a point *above* the line. In the diagram, $\angle 1$ is the angle of elevation from the tower *T* to the plane *P*.

An **angle of depression** is the angle formed by a horizontal line and a line of sight to a point *below* the line. $\angle 2$ is the angle of depression from the plane to the tower.



Holt McDougal Geometry

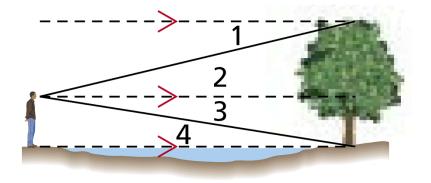
Since horizontal lines are parallel, $\angle 1 \cong \angle 2$ by the Alternate Interior Angles Theorem. Therefore the angle of elevation from one point is congruent to the angle of depression from the other point.



Holt McDougal Geometry

Example 1A: Classifying Angles of Elevation and Depression

Classify each angle as an angle of elevation or an angle of depression.

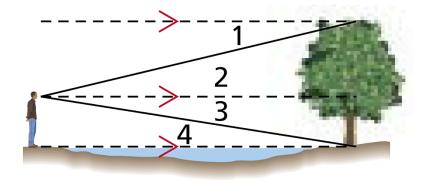


∠1

 $\angle 1$ is formed by a horizontal line and a line of sight to a point below the line. It is an angle of depression.

Example 1B: Classifying Angles of Elevation and Depression

Classify each angle as an angle of elevation or an angle of depression.

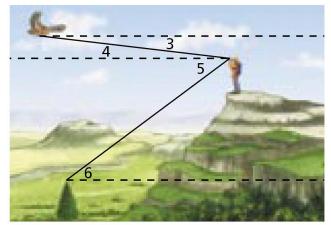


∠4

 $\angle 4$ is formed by a horizontal line and a line of sight to a point above the line. It is an angle of elevation.

Check It Out! Example 1

Use the diagram above to classify each angle as an angle of elevation or angle of depression.



1a. ∠5

 $\angle 5$ is formed by a horizontal line and a line of sight to a point below the line. It is an angle of depression.

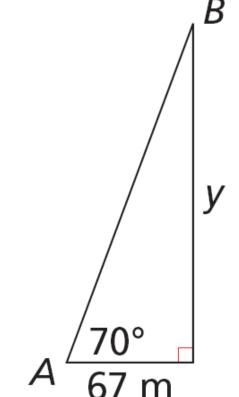
1b. ∠6

 $\angle 6$ is formed by a horizontal line and a line of sight to a point above the line. It is an angle of elevation.

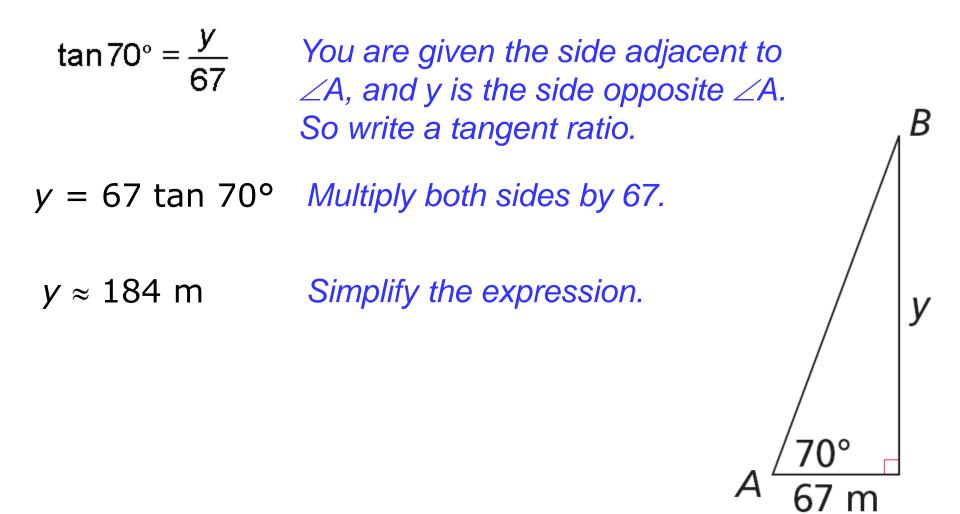
Example 2: Finding Distance by Using Angle of Elevation

The Seattle Space Needle casts a 67meter shadow. If the angle of elevation from the tip of the shadow to the top of the Space Needle is 70°, how tall is the Space Needle? Round to the nearest meter.

Draw a sketch to represent the given information. Let *A* represent the tip of the shadow, and let *B* represent the top of the Space Needle. Let *y* be the height of the Space Needle.



Example 2 Continued



Holt McDougal Geometry

Check It Out! Example 2

What if...? Suppose the plane is at an altitude of 3500 ft and the angle of elevation from the airport to the plane is 29°. What is the horizontal distance between the plane and the airport? Round to the nearest foot.

$$\tan 29^\circ = \frac{3500}{x}$$
You are given the side opposite
 $\angle A$, and x is the side adjacent to
 $\angle A$. So write a tangent ratio. $x = \frac{3500}{\tan 29^\circ}$ Multiply both sides by x and
divide by tan 29°. $x \approx 6314$ ftSimplify the expression.

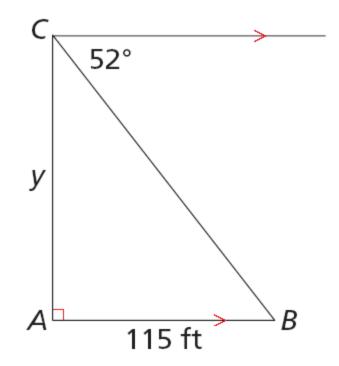
3500 ft

Example 3: Finding Distance by Using Angle of Depression

An ice climber stands at the edge of a crevasse that is 115 ft wide. The angle of depression from the edge where she stands to the bottom of the opposite side is 52°. How deep is the crevasse at this point? Round to the nearest foot.

Example 3 Continued

Draw a sketch to represent the given information. Let *C* represent the ice climber and let *B* represent the bottom of the opposite side of the crevasse. Let *y* be the depth of the crevasse.

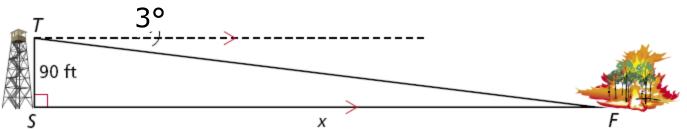


Example 3 Continued

- By the Alternate Interior Angles Theorem, $m \angle B = 52^{\circ}$.
 - $\tan 52^\circ = \frac{y}{115}$ Write a tangent ratio.
 - $y = 115 \tan 52^{\circ}$ Multiply both sides by 115.
 - $y \approx 147$ ft Simplify the expression.

Check It Out! Example 3

What if...? Suppose the ranger sees another fire and the angle of depression to the fire is 3°. What is the horizontal distance to this fire? Round to the nearest foot.



By the Alternate Interior Angles Theorem, $m \angle F = 3^{\circ}$.

 $\tan 3^{\circ} = \frac{90}{x}$ $x = \frac{90}{\tan 3^{\circ}}$ $x \approx 1717 \text{ ft}$

Write a tangent ratio.

Multiply both sides by x and divide by tan 3°.

7 ft Simplify the expression.

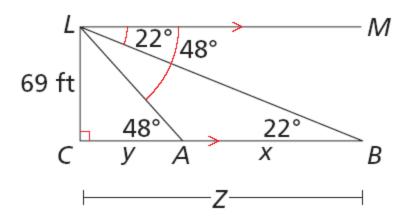
Holt McDougal Geometry

Example 4: Shipping Application

An observer in a lighthouse is 69 ft above the water. He sights two boats in the water directly in front of him. The angle of depression to the nearest boat is 48°. The angle of depression to the other boat is 22°. What is the distance between the two boats? Round to the nearest foot.

Example 4 Application

Step 1 Draw a sketch. Let *L* represent the observer in the lighthouse and let *A* and *B* represent the two boats. Let *x* be the distance between the two boats.



Example 4 Continued

Step 2 Find y.

By the Alternate Interior Angles Theorem, $m\angle CAL = 58^{\circ}$.

In
$$\triangle ALC$$
, $\tan 48^\circ = \frac{69}{y}$.
So $y = \frac{69}{\tan 48^\circ} \approx 62.1$ ft.

Example 4 Continued

Step 3 Find z.

By the Alternate Interior Angles Theorem, $m\angle CBL = 22^{\circ}$.

In
$$\Delta BLC$$
, $\tan 22^\circ = \frac{69}{z}$.
So $z = \frac{69}{\tan 22^\circ} \approx 170.8$ ft.

Holt McDougal Geometry

Example 4 Continued

Step 4 Find x.

- x = z y
- $x \approx 170.8 62.1 \approx 109$ ft

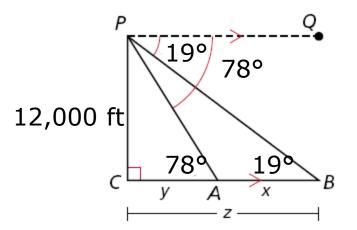
So the two boats are about 109 ft apart.

Check It Out! Example 4

A pilot flying at an altitude of 12,000 ft sights two airports directly in front of him. The angle of depression to one airport is 78°, and the angle of depression to the second airport is 19°. What is the distance between the two airports? Round to the nearest foot.

Check It Out! Example 4 Continued

Step 1 Draw a sketch. Let *P* represent the pilot and let *A* and *B* represent the two airports. Let *x* be the distance between the two airports.



Check It Out! Example 4 Continued

Step 2 Find y.

By the Alternate Interior Angles Theorem, $m\angle CAP = 78^{\circ}$. In $\triangle APC$, $\tan 78^{\circ} = \frac{12,000}{y}$. So $y = \frac{12,000}{\tan 78^{\circ}} \approx 2551$ ft.

Holt McDougal Geometry

Check It Out! Example 4 Continued

Step 3 Find z.

By the Alternate Interior Angles Theorem, $m\angle CBP = 19^{\circ}$.

In ∆*BPC,* tan19° =
$$\frac{12,000}{z}$$
.
So $z = \frac{12,000}{\tan 19^\circ} \approx 34,851$ ft.

Holt McDougal Geometry

Check It Out! Example 4 Continued

Step 4 Find x.

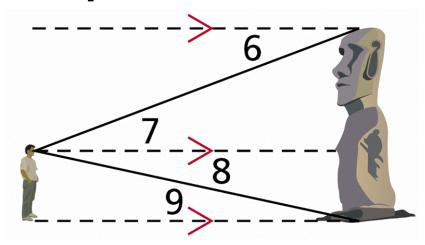
x = z - y

 $x \approx 34,851 - 2551 \approx 32,300$ ft

So the two airports are about 32,300 ft apart.

Lesson Quiz: Part I

Classify each angle as an angle of elevation or angle of depression.



- **1.** $\angle 6$ angle of depression
- **2.** \angle 9 angle of elevation

Holt McDougal Geometry

Lesson Quiz: Part II

- 3. A plane is flying at an altitude of 14,500 ft. The angle of depression from the plane to a control tower is 15°. What is the horizontal distance from the plane to the tower? Round to the nearest foot. 54,115 ft
- 4. A woman is standing 12 ft from a sculpture. The angle of elevation from her eye to the top of the sculpture is 30°, and the angle of depression to its base is 22°. How tall is the sculpture to the nearest foot?

12 ft