Warm Up
A figure has vertices A, B, and C. After a transformation, the image of the figure has vertices A′, B′, and C′. Draw the pre-image and the image on graph paper. Then identify the transformation.

1. A(-3, 1), B(-1, 1), C(-3, 4) translation 6 units right
 A′(3, 1), B′(5, 1), C′(3, 4)

2. A(2, 1), B(5, 1), C(4, 3) reflection across x-axis
 A′(2, -1), B′(5, -1), C′(4, -3)
4-1 Congruence and Transformations

Objectives

Draw, identify, and describe transformations in the coordinate plane.

Use properties of rigid motions to determine whether figures are congruent and to prove figures congruent.
Vocabulary

dilation
isometry
rigid transformation
A **dilation** with scale factor $k > 0$ and center $(0, 0)$ maps (x, y) to (kx, ky).
Remember!

In a transformation, the original figure is the pre-image. The resulting figure is the image.
Example 1: Drawing and Identifying Transformations

Apply the transformation \(M \) to the polygon with the given vertices. Identify and describe the transformation.

A. \(M: (x, y) \rightarrow (x - 4, y + 1) \)

\(P(1, 3), Q(1, 1), R(4, 1) \)

translation 4 units left and 1 unit up
Example 1: Continued

B. \(M: (x, y) \rightarrow (x, -y) \)

\(A(1, 2), B(4, 2), C(3, 1) \)

reflection across x-axis
Example 1: Continued

C. $M: (x, y) \rightarrow (y, -x)$

$R(-3, 0), E(-3, 3), C(-1, 3), T(-1, 0)$

90° rotation clockwise with center of rotation $(0, 0)$
Example 1: Continued

D. \(M: (x, y) \rightarrow (3x, 3y) \)

\(K(-2, -1), L(1, -1), N(1, -2) \) (dilation with scale factor 3 and center (0, 0))
Check It Out! Example 1

1. Apply the transformation \(M : (x, y) \rightarrow (3x, 3y) \) to the polygon with vertices \(D(1, 3), E(1, -2), \) and \(F(3, 0) \). Name the coordinates of the image points. Identify and describe the transformation.

\[D'(3, 9), E'(3, -6), F'(9, 0); \text{ dilation with scale factor 3} \]
Representing Transformations in the Coordinate Plane

<table>
<thead>
<tr>
<th>TRANSFORMATION</th>
<th>COORDINATE MAPPING AND DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation</td>
<td>((x, y) \rightarrow (x + a, y + b)) Translation (a) units horizontally and (b) units vertically</td>
</tr>
<tr>
<td>Reflection</td>
<td>((x, y) \rightarrow (-x, y)) Reflection across y-axis</td>
</tr>
<tr>
<td></td>
<td>((x, y) \rightarrow (x, -y)) Reflection across x-axis</td>
</tr>
<tr>
<td>Rotation</td>
<td>((x, y) \rightarrow (y, -x)) Rotation about (0, 0), 90° clockwise</td>
</tr>
<tr>
<td></td>
<td>((x, y) \rightarrow (-y, x)) Rotation about (0, 0), 90° counterclockwise</td>
</tr>
<tr>
<td></td>
<td>((x, y) \rightarrow (-x, -y)) Rotation about (0, 0), 180°</td>
</tr>
<tr>
<td>Dilation</td>
<td>((x, y) \rightarrow (kx, ky), k > 0) Dilation with scale factor (k) and center (0, 0)</td>
</tr>
</tbody>
</table>
An **isometry** is a transformation that preserves length, angle measure, and area. Because of these properties, an isometry produces an image that is congruent to the preimage.

A **rigid transformation** is another name for an isometry.
Transformations and Congruence

Translations, reflections, and rotations produce images that are congruent to their preimages.

Dilations with scale factor $k \neq 1$ produce images that are not congruent to their preimages.
Example 2: Determining Whether Figures are Congruent

Determine whether the polygons with the given vertices are congruent.

A. \(A(-3, 1), B(2, 3), C(1, 1) \)

\(P(-4, -2), Q(1, 0), R(0, -2) \)

The triangle are congruent; \(\triangle ABC \) can be mapped to \(\triangle PQR \) by a translation: \((x, y) \rightarrow (x - 1, y - 3)\).
The triangles are not congruent; \(\triangle ABC \) can be mapped to \(\triangle PQR \) by a dilation with scale factor \(k \neq 1: (x, y) \rightarrow (1.5x, 1.5y) \).
Determine whether the polygons with the given vertices are congruent. Support your answer by describing a transformation: A(2, -1), B(3, 0), C(2, 3) and P(1, 2), Q(0, 3), R(-3, 2).

The triangles are congruent because \(\triangle ABC \) can be mapped to \(\triangle PQR \) by a rotation: \((x, y) \rightarrow (-y, x)\).
Example 3: Applying Transformations

Prove that the polygons with the given vertices are congruent.

\[A(1, 2), B(2, 1), C(4, 2) \]
\[P(-3, -2), Q(-2, -1), R(-3, 1) \]

\(\triangle ABC \) can be mapped to \(\triangle A'B'C' \) by a translation: \((x, y) \rightarrow (x - 3, y + 1)\); and then \(\triangle A'B'C' \) can be mapped to \(\triangle PQR \) by a rotation: \((x, y) \rightarrow (-y, x)\).
Check It Out! Example 3

Prove that the polygons with the given vertices are congruent: \(A(-4, -2), B(-2, 1), C(2, -2) \) and \(P(1, 0), Q(3, -3), R(3, 0) \).

The triangles are congruent because \(\triangle ABC \) can be mapped to \(\triangle A'B'C' \) by a translation \((x, y) \rightarrow (x + 5, y + 2)\); and then \(\triangle A'B'C' \) can be mapped to \(\triangle ABC \) by a reflection across the x-axis.
Translations, reflections, and rotations can be called congruence transformations.
Example 4: Architecture Application

Is there another transformation that can be used to create this frieze pattern? Explain your answer.
Repeated reflections can create this frieze pattern; a reflection of any section over a line through either the left or right side of each section.
Sketch a frieze pattern that can be produced by using reflections

Possible answer: repeated horizontal reflections
Lesson Quiz : Part-I

Apply the transformation M to the polygon with the given vertices. Identify and describe the transformation.

1. $M: (x, y) \rightarrow (3x, 3y)$

 $A(0, 1), B(2, 1), C(2, -1)$

 dilation with scale factor 3 and center (0, 0)

2. $M: (x, y) \rightarrow (-y, x)$

 $A(0, 3), B(1, 2), C(4, 5)$

 90° rotation counterclockwise with center of rotation (0, 0)
3. \(M: (x, y) \rightarrow (x + 1, y - 2) \)

 \(A(-2, 1), B(-2, 4), C(0, 3) \)

 translation 1 unit right and 2 units down

4. Determine whether the triangles are congruent.
 \(A(1, 1), B(1, -2), C(3, 0) \)
 \(J(2, 2), K(2, -4), L(6, 0) \)

 not \(\cong \); \(\triangle ABC \) can be mapped to \(\triangle JKL \) by a dilation with scale factor \(k \neq 1: (x, y) \rightarrow (2x, 2y) \).
5. Prove that the triangles are congruent. A(1, -2), B(4, -2), C(1, -4) D(-2, 2), E(-5, 2), F(-2, 0)

\[\triangle ABC \text{ can be mapped to } \triangle A'B'C' \text{ by a translation: } (x, y) \rightarrow (x + 1, y + 4); \text{ and then} \]
\[\triangle A'B'C' \text{ can be mapped to } \triangle DEF \text{ by a reflection: } (x, y) \rightarrow (-x, y). \]