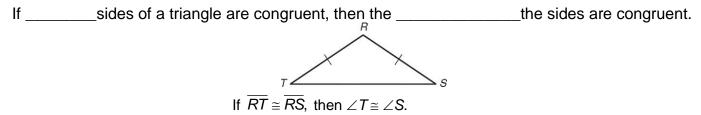
Name _____

Date _____

Period _____


Notes 4-9: Isosceles and Equilateral Triangles

What is an isosceles triangle? _____

- The congruent sides are called the legs.
- The third side is called the base.
- The angle opposite the base is called the vertex angle.
- The angles opposite the congruent sides are called the base angles.
 (These are the angles that are adjacent to the base.)

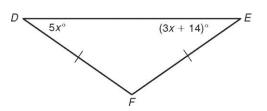
If a triangle has two congruent sides, does the triangle also have two congruent angles?

Isosceles Triangle Theorem

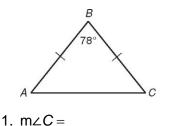
Converse of Isosceles Triangle Theorem

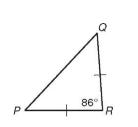
If _______of a triangle are congruent, then the ______those angles are congruent.

If $\angle N \cong \angle M$, then $\overline{LN} \cong \overline{LM}$.

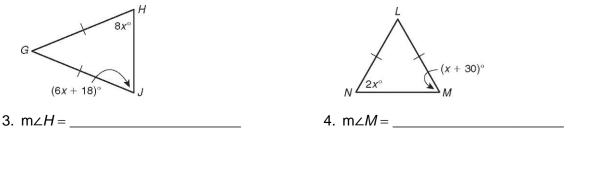

You can use these theorems to find angle measures in isosceles triangles.

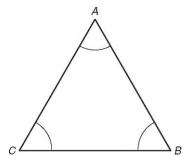
Example


Find m $\angle E$ in $\triangle DEF$.


- m∠D = m∠E
 - 5x = 3x + 14

Isosceles \triangle Thm. Substitute the given values. Solve for x. Find m∠*E*


Find each angle measure.

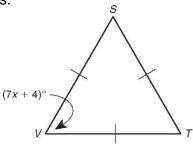

<u>Equilateral Triangle Corollary</u> If a triangle is equilateral, then it is equiangular.

(equilateral $\triangle \rightarrow$ equiangular \triangle)

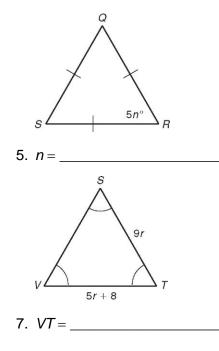
Equiangular Triangle Corollary

If a triangle is equiangular, then it is equilateral.

(equiangular $\triangle \rightarrow$ equilateral \triangle)


If
$$\angle A \cong \angle B \cong \angle C$$
, then $\overline{AB} \cong \overline{BC} \cong \overline{CA}$.

You can use these theorems to find values in equilateral triangles.


Example


Find *x* in \triangle *STV*.

 $\triangle STV$ is equiangular. 7x + 4 = 60° Equilateral $\triangle \rightarrow$ equiangular \triangle The measure of each \angle of an equiangular \triangle is 60°. Solve for x.

Find each value.

