Name _____

Period _____

Date _____ Section 2-6: Geometric Proof

Objectives: 1. Write two-column proofs.

2. Prove geometric theorems by using deductive reasoning.

Choices for Reasons in Proofs

Reason	If you see this (examples)
Congruent Complements Theorem	If two angles are complementary to the same angle (or
	to two congruent angles), then the two angles are
	congruent.
Congruent Supplements Theorem	If two angles are supplementary to the same angle (or
	to two congruent angles), then the two angles are
	congruent.
Right Angle Theorem	If two angles are right angles, then they are
	congruent.
Linear Pair Theorem	If two angles form a linear pair, then they are
	supplementary.
Angle Addition Postulate	$m \angle 1 + m \angle 2 = m \angle 3$
Segment Addition Postulate	AB + BC = AC
Reflexive Property of =	a = a
Symmetric Property of =	If a = b, then b = a.
Transitive Property of =	If a = b and b = c, then a = c.
Distributive	If a(b + c) then ab + ac.
Substitution	If a + b = c and b = 2, then a + 2 = c.
Addition Property of =	If a - 4 = 7, then a = 11.
Subtraction Property of =	If a + 2 = 10, then a = 8.
Multiplication Property of =	If $x/2 = 4$, then $x = 8$.
Division Property of =	If 3x = 21, then x = 7.
Definition of Congruent Angles	Angles that have the same measure.
Definition of Congruent Segments	Segments that have the same measure.
Definition of Midpoint	Point that divides a segment into two congruent
	segments.
Definition of Segment Bisector	Line, ray or segment that divides a segment into two
	congruent segments.
Definition of Angle Bisector	Ray that divides an angle into two congruent angles.
Definition of Right Angle	Angle that measures 90 degrees.
Definition of Straight Angle	Angle that measures 180 degrees.
Definition of Complementary	Two angles that add to 90 degrees.
Definition of Supplementary	Two angles that add to 180 degrees.
Definition of Linear Pair	Adjacent angles that form a straight angle.

Justify the given statement using the picture above.

1. m∠1 + m∠2 = m∠ABC
2. If B is the midpoint of \overline{AD} , then AB = BD.
3. If \overrightarrow{BC} bisects ∠FBE, then ∠2 ≅ ∠3
4. If ∠1 and ∠FBD are supplementary, then m∠1 + m∠FBD = 180°
5. If m∠CBD = 90°, then ∠CBD is a right angle
6. AB + BD = AD
7. If $m \ge 2 = m \ge 3$, then \overrightarrow{BC} bisects $\ge FBE$.
8. If m \angle 3 + m \angle 4 = 90°, then \angle 3 and \angle 4 are complementary
9. If ∠ABC and ∠CBD are right angles, then ∠ABC \cong ∠CBD
10. If $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$.

The following five steps are used to give geometric proofs:

The Proof Process

- 1. Write the conjecture to be proven.
- 2. Draw a diagram if one is not provided.
- 3. State the given information and mark it on the diagram.
- 4. State the conclusion of the conjecture in terms of the diagram.
- 5. Plan your argument and prove your conjecture.

Mark the diagram and answer the questions about the following proof.

Given: \overrightarrow{FD} bisects $\angle EFC$.

 \overrightarrow{FC} bisects $\angle DFB$.

Prove: $\angle EFD \cong \angle CFB$

Proof:

1. \overrightarrow{FD} bisects $\angle EFC$, \overrightarrow{FC} bisects $\angle DFB$.	1. Given
2. ∠EFD \cong ∠DFC, ∠DFC \cong ∠CFB	2. Definition of \angle bisector
3. m $\angle EFD = m \angle DFC$, m $\angle DFC = m \angle CFB$	3. Definition of $\cong \measuredangle$
4. m∠ <i>EFD</i> = m∠ <i>CFB</i>	4. Transitive Property of Equality
5. ∠EFD ≅ ∠CFB	5. Definition of $\cong \measuredangle$

11. What was the given information?

12. What should be marked in the diagram?

13. What was the conjecture to be proved?

14. What titles should be put above the two columns?

15. What property of equality was used to prove the angles congruent?

16. Given: \overrightarrow{BD} is the angle bisector of $\angle ABC$, and $\angle ABD \cong \angle 1$. **Prove:** $\angle DBC \cong \angle 1$

1. \overrightarrow{BD} is the angle bisector of $\angle ABC$. 1. _____ 2. $\angle ABD \cong \angle DBC$ 2. 3. ∠*ABD* ≅ ∠1 3. _____ 4. ∠*DBC* ≅ ∠1 4. С • F **17.** Given: B is the midpoint of \overline{AC} and $\overline{AB} \cong \overline{EF}$ **Prove**: $\overline{BC} \cong \overline{EF}$ 1. B is the midpoint of \overline{AC} 1. _____ 2. $\overline{AB} \cong \overline{BC}$ 2. 3. $\overline{AB} \cong \overline{EF}$ 3. ____ 4. $\overline{BC} \cong \overline{EF}$ 4._____

18. Given: *N* is the midpoint of \overline{MP} , *Q* is the midpoint of \overline{RP} , and $\overline{PQ} \cong \overline{NM}$. **Prove:** $\overline{PN} \cong \overline{QR}$

- 1. *N* is the midpoint of \overline{MP} .
- 2. Q is the midpoint of \overline{RP} .
- 3. $\overline{PN} \cong \overline{NM}$
- 4. $\overline{PQ} \cong \overline{NM}$
- 5. $\overline{PN} \cong \overline{PQ}$
- 6. $\overline{PQ} \cong \overline{QR}$
- 7. $\overline{PN} \cong \overline{QR}$

19. Given: $\angle 4$ and $\angle 5$ are supplementary and $\angle 5$ and $\angle 6$ are supplementary.

Prove: $\angle 4 \cong \angle 6$

Statements	Reasons
1. ∠4 and ∠5 are supplementary.	1.
2. ∠5 and ∠6 are supplementary.	2.
3. m∠4 + m∠5 = 180°	3.
4. m∠5 + m∠6 = 180°	4.
5. m∠4 + m∠5 = m∠5 + m∠6	5.
6. m∠4 = m∠6	6.
7. ∠4 ≅ ∠6	7.

20. Given: $\angle 1$ and $\angle 2$ are right angles. Prove: $\angle 1 \cong \angle 2$

Statements	Reasons
1. ∠1 and ∠2 are right angles	1.
2. m∠1 = 90°	2.
3. m∠2 = 90°	3.
4. m∠1 = m∠2	4.
5. ∠1 ≅ ∠2	5.

